On a Multidimensional Volkenborn Integral and Higher Order Bernoulli Numbers
ثبت نشده
چکیده
In particular, the values at x = 0 are called Bernoulli numbers of order k, that is, Bn (0) = Bn k) (see [1, 2, 4, 5, 9, 10, 14]). When k = 1, the polynomials or numbers are called ordinary. The polynomials Bn (x) and numbers Bn were first defined and studied by Norlund [9]. Also Carlitz [2] and others investigated their properties. Recently they have been studied by Adelberg [1], Howard [5], and Young [14]. In [l], Adelberg has given congruences for Bn which extended the Kummer congruences and has deduced information concerning the irreducibility of certain Bernoulli polynomials with order divisible by p. Howard [5] investigated other numbers related to the higher order Bernoulli numbers. Young [14] considered the p-adic integrals and measures to obtain congruences for the higher order Bernoulli numbers and polynomials. In this paper, using a multidimensional Volkenborn integral, we give a p-adic expression for Bernoulli number of order k. As an easy corollary we see that a p-adic expression for the higher order Bernoulli number is related to the sums of products of the ordinary Bernoulli numbers in Dilcher [4]. We give some examples. Our approach essentially coincides with the p-adic expression for the ordinary Bernoulli numbers
منابع مشابه
IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS
Abstract. The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss’s multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iter...
متن کاملSymmetry Properties of Higher-Order Bernoulli Polynomials
Let p be a fixed prime number. Throughout this paper Zp, Qp, and Cp will, respectively, denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp. For x ∈ Cp, we use the notation x q 1 − q / 1 − q . Let UD Zp be the space of uniformly differentiable functions on Zp, and let vp be the normalized exponential valuation of Cp wi...
متن کاملCOMPLETE SUM OF PRODUCTS OF (h,q)-EXTENSION OF EULER POLYNOMIALS AND NUMBERS
By using the fermionic p-adic q-Volkenborn integral, we construct generating functions of higher-order (h, q)-extension of Euler polynomials and numbers. By using these numbers and polynomials, we give new approach to the complete sums of products of (h, q)-extension of Euler polynomials and numbers one of which is given by the following form: are the multinomial coefficients and E (h) m,q (y) ...
متن کاملTwisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions
The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کامل